
Security analysis and fault injection
experiment on AES

Olivier Faurax1,2, Traian Muntean2

1École des Mines de St Étienne - Site Georges Charpak, Laboratoire SESAM, Avenue des Anémones, 13120 GAR-
DANNE, FRANCE
2Université de la Méditerranée, ”Systèmes Informatiques Communicants”, 13288 MARSEILLE, FRANCE
E-mail: faurax@emse.fr

Robustness of cryptographic circuits against fault attacks is a great concern to ensure security. In this paper, we present
a security analysis of such circuits and a fault injection methodology and tool (PAFI). We apply them to AES as a case
study and show that injected faults that lead to known fault attacks match our analysis.

Mots-clés: fault attacks, cryptography, AES

1 Introduction
Cryptographic circuits are often a foundation of security in nowadays systems. As a consequence, attacks
on them are critical and can be used to defeat security policies.

In this context, the protection against attacks is a major concern. A fault attack uses a physical perturba-
tion of the circuit in order to obtain faulty computations. These miscomputed results can enable cryptanal-
ysis and reveal secret data. Several cryptosystems are concerned by this type of attacks : RSA [BDL97],
DES [BS97] and AES [Gir04][DLV03][PQ03].

The robustness against fault attacks must be evaluated to ensure fault tolerance and security. This can be
achieved by injecting faults in the system in order to validate its behavior under fault attacks. It is possible to
do this using physical fault [GKT89][AAA+90][MRMS94], but this can also be done using built-in debug
mechanisms [FSK97][BPRR98].

Another approach is to use fault injection during simulation to provide robustness evalutation before
silicon IC manufacturing in an relatively unexpensive manner. Simulating the circuit permits to inject fault
by modifying its description [JAR+94][LH00][ZME03] or to add a custom fault injector in the design
[FMR06]. Our approach is to use an unmodified description of the circuit to be very accurate regarding to
the corresponding physical circuit.

However, some properties of cryptographic algorithm can be used to predict the temporal sensitivity of
circuits. In this paper, we propose a metric of sensitivity against fault attacks for circuits and validate it
using fault injection in simulation on AES.

This paper is organized as follows : the algorithm AES and its implementation is introduced in section
2. We describe our analysis of sensitivity in section 3 and apply it to AES. Then, we present our injection
methodology and tool in section 4. To conclude, future work is described in section 5.

2 AES
2.1 AES algorithm
AES [DR98] is a well-known cryptographic block cipher. It is a substitution-permutation network that takes
as input a 128-bit plain text of and a 128-, 192- or 256-bit cipher key.



Olivier Faurax1,2, Traian Muntean2

In this paper, we consider the variant with a 128-bit key length. This AES is made of 10 rounds where the
input is scrambled using a round key. Each round, the next round key is computed from the current round
key. The first input is the plain text and the first round key is the cipher key.

The part of the round that deals with the data can be divided in four steps : AddRoundKey, SubBytes,
ShiftRows, MixColumns. The 128 bits of data are viewed as a 4x4 matrix of 16 bytes.

1. AddRoundKey computes the XOR between the input and the round key. This is the only step of the
round that takes into account the value of the key.

2. SubBytes performs a substitution over GF(28) of each byte. This substitution provides the non-
linearity of the round.

3. ShiftRows operates on each 4-byte row : it cyclically shifts the 4 bytes of a row by 0, 1, 2, 3 respec-
tively. This scrambles the columns at each round by making them to become diagonals.

4. MixColumns applies a linear transformation over GF(28) on each 4-byte column. The diffusion of
this step is only on a quarter of the data state. However, two MixColumns combined with a ShiftRows
provide a complete diffusion of the AES data state.

The keyschedule of AES generates round key for step n+1 using the round key of step n, the round key 1
being the cipher key. The whole process is described in details in [DR98]. The diffusion of the keyschedule
is at least four bytes, depending of the byte considered.

2.2 Implementation of AES
Our AES circuit takes four 32-bit words for the data and four 32-bit words for the cipher key. Then it
calculates the result and output it as four 32-bit words.

Fig. 1: Architecture of AES

The AES is composed of six parts labeled L1 to L6 in figure 1.

• L1 and L2 are input blocks for the plain text and the cipher key. Data and key are 128-bit long but
the input is 32-bit wide, so L1 and L2 have to buffer the data and key during the loading process.

• L3 is a state controler that drive the synchronisation between the other parts.



Security analysis and fault injection experiment on AES

• L4 contains the four AES substeps described in 2 with a 128-bit register representing the current
state.

• L5 is a block that computes round key from the key provided.

• L6 outputs the 128-bit long result into four 32-bit words in a similar way as L1 and L2 for the input.

3 Analysis of security of AES
For an intruder, a fault in a system can reveal useful information, only if the effect of the fault is known and
limited.

A fault that induces a faulty output similar to a byzantine error is difficult to exploit as an attacker has to
make a lot of assumptions on the parameters used. That is why the diffusion of the algorithm is important
for robustness.

Exploitable faults are usually close to the outputs because it makes the faulty computation more accessi-
ble.

The execution of a synchronous circuit is a set of successive states that outputs a final state.

• The diffusion (d1) is the part of the final state that depends of a bit of the current state. d1 is 1 when
the whole final state depends of the current state.

• The distance (d2) is a distance metric between the current state and the output. d2 is linear, starting at
1 on the beginning of the circuit and 0 at the end of the computation.

• The sensitivity (s) is a metric of the sensitivity of the circuit.

When d1 = 0 or d2 = 0, the current state is the final state. The computation is finished, secret data is not
involved, the sensitivity is 0.

Otherwise, we define the value of the sensitivity as

s =
1

d1d2

.

Fig. 2: Theorical sensitivity of AES



Olivier Faurax1,2, Traian Muntean2

The results on AES are displayed on the figure 2 (the sensitivity has been reduced by 40 to fit in the
window).

We can see that the AES sensitivity is high during the 8th and 9th round. This will be confirmed by our
fault injection experiment.

4 Fault injection and results
4.1 Yet another fault injection tool : PAFI

Fig. 3: PAFI

The purpose of PAFI (Prototype of Another Fault Injector, figure 3) is to use unmodified modelization
of the circuit to take into account very accurate details of the circuit (gates, delays). Our approach is to
evalutate the circuit dependability in simulation while being close to the physical design.

The circuit is defined in a Verilog netlist. The purpose of the first step is to parse the netlist and to find
the latches and their logical cone. Then, a structural weight can be computed according to the fault model
the user wants to focus on.

At the same time, the netlist can be simulated without injecting faults in order to provide information
about the fault-free run. This information are used to compute a dynamic weight that can be combined with
structural weight to take in account expected activated region.

Then, the possible faults and their weight are presented to the user that can choose the amount of injection
to perform, depending on the time he can spend and the accuracy he needs.

From the chosen list of faults, our tool generates a command file for the simulator used (Cadence NCSim).
This command file describes the simulations and the fault injections. As we do not modify the circuit, the
only versatile fault injection possibility is to use the built-in command of the simulator. The circuit execution
is simulated until the fault injection time. Then, the state of the circuit is modified by the similator and the
simulation is resumed. This part of the tool is specific to the simulator.

However, our tool is designed to be modular : each step is performed by an independant program whose
results are stored in an XML files. This allows, for instance, to easily replace one module to adapt it to
another simulator.

During each simulation, the circuit under test is manipulated by a benchmark that provide input signals,
check output signals and log results on files.



Security analysis and fault injection experiment on AES

Fig. 4: Output of PAFI using Gnuplot

A custom analyser reads these log files and produces the expected computation of safety rate and user-
defined analysis. The outcome can be graphically displayed (Cf. figure 4).

4.2 Injections on AES

Fig. 5: Faulty output bytes on AES

We made an exhaustive injection on AES. Our benchmark is to input known data and cipher key, to log
the output (if any) and to compare it with the expected result.

Using a clock at 10 MHz, data and key are loaded in 750 ns. The computation occurs between 750 ns
and 1950 ns, with a clock cycle of 100 ns. The results is expected at 1950 ns (first 4 bytes) until 2350 ns.

We injected on the 664 latches of the design during the computation that took 13 clock cycles, leading to
13*664 simulations, injecting one bit-flip for each simulation.

The results are shown on figure 5. On average, 60.2% of injected faults do not lead to faulty results and
27.6% of faults induce 16-byte faulty outputs.

The faults injected at the beginning of the computation (750 and 850 ns) produce errors that are dependent
of the design of the AES and are not relevant here due to the fact that the first round of the AES starts at
950 ns.

Between 950 ns and 1750 ns, results are fault-free or 16-byte faulty outputs. Some injections near the end
of the computation generate 4-byte errors : this verify the diffusion properties of AES (4 bytes by round,
all bytes after 2 rounds).



Olivier Faurax1,2, Traian Muntean2

The outputs with only one faulty byte at the end are due to an injection just before the output of the result.

According to known attacks ([DLV03][PQ03]), AES is sensitive to fault attack when partially faulted
output are computed.

Our analysis matches the results of fault injections : the exploitable 4-byte errors occurs at the 9th round.

5 Conclusion
In this work, we proposed a security analysis that aims cryptographic circuits and validated it on AES using
PAFI, our fault injection tool. The fault injections leading to known attacks match the prediction of our
analysis.

Further studies will be focused on selecting injected faults to be able to extend the fault model to multiple
faults without increasing the time needed to perform the simulations.

References
[AAA+90] Jean Arlat, Martine Aguera, Louis Amat, Yves Crouzet, Jean-Charles Fabre, Jean-Claude

Laprie, Eliane Martins, and David Powell. Fault injection for dependability validation: A
methodology and some applications. IEEE Trans. Softw. Eng., 16(2):166–182, 1990.

[BDL97] Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. On the importance of checking
cryptographic protocols for faults. Lecture Notes in Computer Science, 1233:37–51, 1997.

[BPRR98] A. Benso, P. Prinetto, M. Rebaudengo, and M. Sonza Reorda. EXFI: a low-cost fault injection
system for embedded microprocessor-based boards. ACM Transactions on Design Automation
of Electronic Systems., 3(4):626–634, 1998.

[BS97] Eli Biham and Adi Shamir. Differential fault analysis of secret key cryptosystems. In Bur-
ton S. Kaliski Jr., editor, Advances in Cryptology - CRYPTO ’97, 17th Annual International
Cryptology Conference, Santa Barbara, California, USA, August 17-21, 1997, Proceedings,
volume 1294 of Lecture Notes in Computer Science, pages 513–525. Springer, 1997.

[DLV03] P. Dusart, G. Letourneux, and O. Vivolo. Differential fault analysis on a.e.s. Cryptology ePrint
Archive, Report 2003/010, 2003. http://eprint.iacr.org/.

[DR98] J. Daemen and V. Rijmen. Aes proposal: Rijndael, 1998.

[FMR06] Julien Francq, Pascal Manet, and Jean-Baptiste Rigaud. Material emulation of faults on cryp-
toprocessors. In Proceedings of Sophia Antipolis forum of MicroElectronics (SAME) 2006,
2006.

[FSK97] Peter Folkesson, Sven Svensson, and Johan Karlsson. Evaluation of the thor microprocessor
using scan-chain-based and simulation-based fault-injection, 1997.

[Gir04] Christophe Giraud. Dfa on aes. In Hans Dobbertin, Vincent Rijmen, and Aleksandra Sowa,
editors, Advanced Encryption Standard - AES, 4th International Conference, AES 2004, Bonn,
Germany, May 10-12, 2004, Revised Selected and Invited Papers, volume 3373 of Lecture
Notes in Computer Science, pages 27–41. Springer, 2004.

[GKT89] U. Gunneflo, J. Karlsson, and J. Torin. Evaluation of error detection schemes using fault
injection by heavy-ion radiation. In Proceedings of the 19th International Symposium on Fault
Tolerant Computing, (FTCS-19), IEEE, Austin, Texas, USA, pages 340–347, 1989.

[JAR+94] Eric Jenn, Jean Arlat, Marcus Rimen, Joakim Ohlsson, and Johan Karlsson. Fault injection
into VHDL models: The MEFISTO tool. In Proceedings of the 24th International Symposium
on Fault Tolerant Computing, (FTCS-24), IEEE, Austin, Texas, USA, pages 66–75, 1994.



Security analysis and fault injection experiment on AES

[LH00] R. Leveugle and K. Hadjiat. Optimized generation of vhdl mutants for injection of transition
errors. In SBCCI ’00: Proceedings of the 13th symposium on Integrated circuits and systems
design, page 243, Washington, DC, USA, 2000. IEEE Computer Society.

[MRMS94] Henrique Madeira, Mario Zenha Rela, Francisco Moreira, and Joao Gabriel Silva. RIFLE:
A general purpose pin-level fault injector. In European Dependable Computing Conference,
pages 199–216, 1994.

[PQ03] Gilles Piret and Jean-Jacques Quisquater. A differential fault attack technique against spn
structures, with application to the aes and khazad. In Cryptographic Hardware and Embedded
Systems − CHES 2003, volume 2779 of Lecture Notes in Computer Science, pages 77–88.
Springer, 2003.

[ZME03] Hamid R. Zarandi, Seyed Ghassem Miremadi, and Alireza Ejlali. Dependability analysis using
a fault injection tool based on synthesizability of hdl models. In DFT ’03: Proceedings of the
18th IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems, pages
485–492. IEEE Computer Society, 2003.


